

Predicting cave formations in Saturn's moon Titan

Michael J. Malaska¹, Karl Mitchell¹.

¹Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA

Funding from ORAU NPP Program / ASTID / OPR

(c) 2017 California Institute of Technology. Government sponsorship acknowledged.

Fluids and materials

Laitii (

H₂O

Fluids

Materials

Halite (NaCl)
Gypsum (NaSO₄)
Limestone (CaCO₃)
Dolomite (CaMg(CO₃)₂)
Quartz (SiO₂)

Titan (94 K)

Methane $(CH_4) / N_2$ Ethane (C_2H_6) Propane (C_3H_8)

Ethylene (C₂H₄)
Acetylene (C₂H₂)
n-Butane (C₄H₁₀)
1,3-Butadiene (C₄H₆)
Benzene (C₆H₆)
Acrylonitrile (CH₂CHCN)
Acetonitrile (CH₃CN)
Cyanoacetylene (HCCCN)

Titan Organic Cycle Organics and CH₄

Atmospheric photochemistry products

CH₄ precipitation

Soluble materials Dissolution Depostion?

Titan organics vs. Earth carbonate

Simple dissolution
No dissolved ion effect
No biology (?)
No pH effects (no pH)

Complex dissolution Dissolved ion effects Microbe alteration pH effects

Multiple liquids possible CH₄ evaporation→more aggressive!

H₂O evaporation causes deposition

N₂ gas increase → deposition

CO₂ gas increase

→aggressive dissolution

CH₄ methane is a poor solvent C₂H₆ ethane is better

Solubility of benzene in methane-ethane Removal of methane causes dissolution

N_2 (nitrogen) is a lousy solvent^[1] CH_4 (methane) loves N_2 ; C_2H_6 (ethane) does not More CH_4 , lower T, more pressure \rightarrow More N_2 (bad)^[2]

^[1] Glein and Schock, Geochim et Cosmochim Acta 115 (2013) 217-240.

^[2] Malaska et al., Icarus 289 (2017) 94-105.

Aggressive dissolution

Saturation deposition

Add ethane (C_2H_6) or propane (C_3H_8)

Add CH₄/N₂

Add ethylene solid

Mixed solvent evaporation (increases remnant C₂H₆)

Total complete evaporation

Add heat (→removes N₂) Cool $(\rightarrow adds N_2)$

Decrease pressure (removes N₂)

Increase pressure (adds N₂)

Predicted cave formations: Scalloping

Formed in limestone, gypsum, halite, dolomite on Earth Same flow processes/regime should occur on Titan

Scalloping in Parks Ranch cave gypsum conduit Carlsbad, NM (w/ Aaron Curtis)

Predicted formations: Soda Straws 1

Inceased depth \rightarrow more $N_2 \rightarrow$ solubility drops \rightarrow deposition

- 1. Higher N₂ pressure at depth
- 2. N₂ goes into solution.N₂ lowers solubility.Materials precipitate
- 3. Cycle repeats. Soda straw grows

Predicted formations: Soda Straws 2

Mixed solvent $\rightarrow C_2H_6$ residue $\rightarrow CH_4$ arrives \rightarrow precipitation

1. Mixed saturated CH₄/C₂H₆ liquid

- 2. CH₄ evaporates C₂H₆ residue aggressive
- 3. Saturated CH₄ arrives. Solubility drops. Excess precipitates on sides

Predicted formations: Soda Straws 3

Airborne particles→wetted by drops→evaporite cement

1. Drop forms

2. Haze/dust particles stick to droplet

3. Drop evaporates, cements particles.

Example of mud soda straws

Lava tube near Pisgah Crater, Mojave desert, CA

Titan dissolved minerals are mixed

Deposition layers could be chemically complex Could serve as marker for Titan chemical/climate history

Titan evaporite sequence: Cordier et al., Icarus 270 (2016) 41-56.

Phase transitions of Titan materials: Toumi et al., Icarus 270 (2016) 435-442

Titan co-crystals: Vu et al., J. Phys. Chem. A 118 (2014) 4087–4094

Titan minerals:
Maynard-Casley et al.,
American Mineralogist,
in revision.

Image credit: Montana Bureau of Mines and Geology / Rich Aram and Alan English https://www.mbmg.mtech.edu/calendars/2016info.asp

Conclusions

Like Earth, but Titan-different...

Surface stream

Collapsed sinkhole

Soluble rock (limestone)

Stalactite

Drip curtail

Collapse
blocks

Stalagmite

Christopherson, 2003

Titan karst: cave formations likely

Organic dissolution/precipitation equilibria

Mixed and complex hydrocarbon\nitrogen liquids

Mixed and complex organic chemical/structural deposits

→ pure crystals throughout not likely

Compare/contrast with Earth non-limestone features
Scalloping likely in conduits
Soda straws have multiple modes of formation